Annales – Suites et algorithme (facile)

Les suites géométriques

Définition

 

Soit $q$ un réel et $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles.

On dit que $(u_n)$ est une suite géométrique si, et seulement si :

Pour tout $n\in\mathbb{N}$ : $u_{n+1}=q\times u_n$

 

$ u_0 \underset{\times q}{\longrightarrow} u_1 \underset{\times q}{\longrightarrow} u_2 \underset{\times q}{\longrightarrow} \cdots \underset{\times q}{\longrightarrow} u_{n-1}\underset{\times q}{\longrightarrow} u_n \underset{\times q}{\longrightarrow} u_{n+1}$

On dit alors que $q$ est la raison de la suite géométrique $(u_n)$ et $u_0$ son premier terme.

 

Expression de $u_n$ en fonction de $n$

 

Soit $(u_n)$ une suite géométrique de raison $q$.

Si $u_0$ est le premier terme de la suite $(u_n)$, on peut démontrer facilement par récurrence que pour tout $n\in\mathbb{N}$,

$u_n=u_0\times q^n$.

On peut encore écrire cette égalité de la manière suivante :

$u_n=u_p\times q^{n-p}$ avec $p\leqslant n$.

 

Somme de termes consécutifs

 

On souhaite calculer la somme de termes consécutifs d’une suite géométrique $(u_n)$.

 

La somme se calcule de la manière suivante :

$\text{Somme}=\text{(1er terme)} \times \dfrac{1-q^{\text{nombre de termes}}}{1-q}$

Comment montrer qu'une suite est géométrique ?

Comment montrer qu’une suite est géométrique ?

 

Afin de montrer qu’une suite $(u_n)$ est géométrique, on commence par calculer les premiers termes en s’assurant qu’ils ne sont pas nuls puis on calcule les rapports des premiers termes : $\dfrac{u_1}{u_0}$ et $\dfrac{u_2}{u_1}$. 

 

Considérons par exemple la suite $u_n = 4 \times 3^n$. On a alors $\dfrac{u_1}{u_0} = 3$ et $\dfrac{u_2}{u_1} = 3$.

Si il apparait que le rapport des premiers termes est une constante $q$: on émet alors une conjecture en supposant que la constante ainsi trouvée est la raison de la suite

Il faut alors montrer en revenant à la définition d’une suite géométrique que $u_{n + 1} = q \times u_n$ pour tout $n \in \mathbb{N}$.

 

En revenant à notre exemple, on souhaite montrer que $u_{n + 1} = 3 u_n$.

Or :

$3 u_n = 3 \times ( 4 \times 3^n ) $

$3 u_n= 4 \times 3^{n + 1} $

$3 u_n= u_{n + 1}$.

Donc $(u_n)$ est une suite géométrique de raison $3$ et de premier terme $u_0 = 4 \times 3^0 = 4 \times 1 = 4$.

 

La boucle Tant que

La boucle Tant que

 

Lors de certains algorithmes, il est possible d’utiliser des boucles dont on ignore le nombre de répétitions : ce sont les boucles Tant que.

 

Exemple :

on dispose d’une population d’individus de 3000 habitants qui augmente chaque année de 2%.

On se demande au bout de combien d’années la population aura dépassé 4000 habitants mais on ignore le nombre d’années : on utilise donc une boucle Tant que.

On écrit donc un algorithme qui permettra de trouver le nombre d’années $N$ pour que la population $P$ dépasse 4000. 

 

  • Variables :  $N, P$
  • Entrée :     $3000 \to P$

                 $0 \to N$

  • Traitement : (on traduit la question avec un boucle)

                 Tant que $P < 4000$ (on souhaite connaitre l’année où la population dépasse 4000 habitants donc tant qu’elle est inférieure à 4000 on continue les calculs et on arrête la première fois qu’elle dépasse 4000). 

                       $ P + 0,02P \to P$

                        $N + 1 \to N$

                  Fin Tant que

  • Sortie :       Afficher $N$

 

Sans les commentaires, l’algorithme est : 

 

Variables :    $N, P$

Entrée :        $3000 \to P$

                    $0 \to N$

Traitement : Tant que $P < 4000$  

                         $P + 0,02P \to P$

                         $N + 1 \to N$

                    Fin Tant que

Sortie :         Afficher $N$

 

 

On peut regarder les différentes valeurs que prennent $N$ et $P$ au début et à la fin de l’algorithme.

Ainsi, au bout d’un an, la population atteint 3060 habitants, $P = 3060$ et $N=1$.

Or $P < 4000$, on continue donc les calculs.

Au bout de 14 années, la population vaut environ $P \approx 3958$.

Mais un an plus tard, au bout de 15 ans, la population vaut $P \approx 4037 > 4000$.

On ne rentre donc plus dans la boucle Tant que et on affiche la valeur de $N$ c’est à dire 15.

Ainsi, il aura fallu 15 ans pour que la population dépasse 4000 habitants.

 

Le tableau d’avancement du programme est le suivant : 

$P$ $N$
3000 0
3060 1
$\vdots$ $\vdots$
$\approx 3958$ 14
$\approx 4037$ 15

Tu veux réviser 2x plus vite ?

Découvre les offres des Bons Profs avec :