Développer, identitiés remarquables

Égalités remarquables

Égalités remarquables

 

Il existe trois égalités remarquables, aussi connues sous le nom d’identités remarquables, à connaitre par coeur. 

 

$(a + b)^2 = a^2 + 2ab + b^2$

$(a – b)^2 = a^2 – 2ab + b^2$

$(a + b)(a – b) = a^2 – b^2$

 

Ces expressions peuvent être utilisées dans les deux sens, c’est à dire que l’on peut trouver dans un exercice la forme de gauche et il s’agit d’écrire la forme de droite : cela correspond au développement. L’autre sens correspond à la factorisation.

 

Exemples :

a) Développer $(x – 7)^2$. 

On applique la deuxième formule avec $a = x$ et $b = 7$. 

$(x – 7)^2 = x^2 – 2\times x \times 7 + 7^2 $

$(x – 7)^2= x^2 -14x + 49$. 

 

b) Factoriser $x^2 – 25$. 

On reconnait ici la dernière identité remarquable, avec $a = x$ et $b = 5$. 

En effet, $5^2 = 25$.

Ainsi,

$x^2 – 25 = (x – 5)(x + 5)$. 

Égalité remarquable - Exemple n°2

Égalité remarquable - Exemple n°3

Égalité remarquable - Exemple n°1

Double distributivité

Double distributivité

 

La formule de la double distributivité est la suivante :

$(a+b)(c+d)=ac+ad+bc+bd$

 

Exemples : 

a) Développer $(x + 2)(3x + 4)$. 

On applique la formule avec $a = x, b = 2, c = 3x$ et $d = 4$. 

Ainsi,

$(x + 2)(3x + 4) = x \times 3x + x \times 4 + 2 \times 3x + 2 \times 4 $

$(x + 2)(3x + 4) = 3x^2 + 4x + 6x + 8$

La dernière étape du calcul consiste à regarder si il est possible d’effectuer une réduction, en regroupant les termes semblables.

Finalement, 

$(x + 2)(3x + 4) = 3x^2 + 10x + 8$. 

 

b) Développer $(5x – 7)(6 – 2x)$. 

L’astuce consiste à réécrire, lorsque l’on débute, le produit sous la forme

$(5x – 7)(6 – 2x) = (5x + (- 7))(6 +  (- 2x))$.

Ainsi, on applique la formule avec $a = 5x, b = -7, c = 6$ et $d = -2x$. 

On trouve alors que :

$(5x – 7)(6 – 2x) =(5x + (- 7))(6 +  (- 2x))$

$(5x – 7)(6 – 2x) = 30x – 10x^2 + – 42 + 14x$

$(5x – 7)(6 – 2x) = -10x^2 + 44x – 42$

 

c) Développer $(1 + y)(2y – 3)$

$(1 + y)(2y – 3) = 2y – 3 + 2y^2 -3y $

$(1 + y)(2y – 3) = 2y^2 – y -3$. 

Tu veux réviser 2x plus vite ?

Découvre les offres des Bons Profs avec :