Première > Mathématiques > Boost Maths > Boost Maths - Fonctions linéaires et affines
Accède gratuitement à cette vidéo pendant 7 jours
Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !
Une fonction affine est une fonction de la forme : $f(x) = ax + b$
Le nombre $a$ est le coefficient directeur de la droite, c'est à dire celui qui donne la pente de la droite, $x$ est la variable.
Le nombre $b$ l'ordonnée à l'origine, c'est à dire la valeur de la fonction lorsque $x = 0$.
Une fonction linéaire est une fonction affine particulière où $b = 0$ :
$g(x) = ax$, il s'agit d'une droite passant par l'origine.
Si le coefficient directeur est strictement positif, alors la fonction $f$ est croissante sur $\mathbb{R}$.
Si le coefficient directeur est strictement négatif, alors la fonction $f$ est décroissante sur $\mathbb{R}$.
Si le coefficient directeur est nul, $f$ est constante sur $\mathbb{R}$ dont la représentation graphique est une droite parallèle à l'axe des abscisses.
On regarde pour quelles valeurs de $x$ la fonction est négative et pour quelles valeurs elle est positive.
Dans les deux cas, si $a \neq 0$, la fonction $f$ s'annule en $x = \dfrac{-b}{a}$.
Si $a>0$, le tableau est le suivant :
Si $a<0$, le tableau est le suivant :
Exemple
La fonction rouge est la fonction $f(x) = 0.5x + 2$. Son ordonnée à l'origine est 2.
Le coefficient directeur vaut $0.5 > 0$ donc $f$ est croissante.
La fonction $f$ s'annule pour $x = \dfrac{-2}{0.5} = -4$. Elle est négative pour $x< -4$ et positive pour $x>-4$.
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.